| 1. | The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations . 基本的方法是以双曲型偏微分方程组的简单波解为根据的。 |
| 2. | Oscillation of certain a nonlinear delay hyperbolic partial differential equation 非线性中立双曲型偏微分方程的振动准则 |
| 3. | Oscillation criteria of nonlinear neutral hyperbolic partial differential equations 抛物型时滞偏微分方程解振动的充要条件 |
| 4. | Oscillations of the solutions of hyperbolic partial differential equations of neutral type 非线性中立型时滞抛物微分方程解的振动性 |
| 5. | Oscillation of the solutions of hyperbolic partial differential equation with continuous delay 具有连续时滞的双曲型偏微分方程解的振动性 |
| 6. | Nonstandard proofs of the existence and uniqueness of solutions to a kind of hyperbolic partial differential equations 一类双曲型偏微分方程解的存在性与惟一性的非标准证明 |
| 7. | Telegraph equations , can be looked as cascade connection of two - port network of lumped circuit of transmission line , is a hyperbolic partial differential equations 传输线可以看作集中参数二端口网络的级联,其数学模型?电报方程是一阶双曲型偏微分方程组。 |
| 8. | A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic , parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science , engineering , and other fields 本课程讲授求解不同线性及非线性椭圆、抛物线及双曲线偏微分方程式与积分方程式等之现代数值技巧基础,并强调在许多科学、工程及相关领域上的应用。 |